

حفاظت در برابر اشعه

safety and Protection

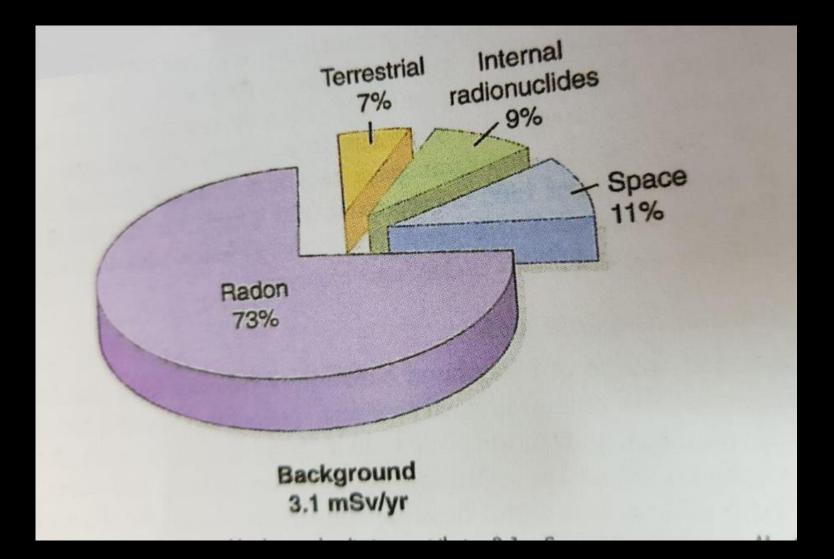


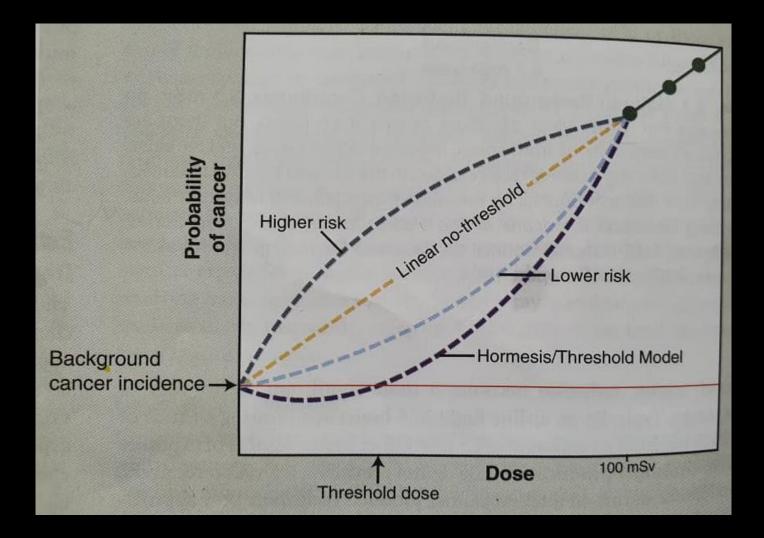
TABLE 3.1 Average Annual Effective Dose of Ionizing Radiation

	DOSE (mSv)	
Source	USª	Global ^b
Natural background		
Radon	2.3	1.3
Space	0.3	0.4
Internal radionuclides	0.3	0.3
Terrestrial	0.2	0.5
Subtotal background	3.1	2.4
Medical		
Computed tomography	1.5	0.57
Interventional fluoroscopy	0.4	
Conventional radiography and fluoroscopy	0.3	
Dental	0.007	0.002
Nuclear medicine	0.8	0.03
Subtotal medical	3.0	0.6
Consumer products and other	0.1	0.01
Grand total	6.2	3.0

Dentomaxillofacial radiology:risk and doses

- Optimised to produce a diagnostically acceptable image
- Less than the threshold needed to cause any deterministic effects
- Minimized to keep the risk of stochastic effects within an acceptable range

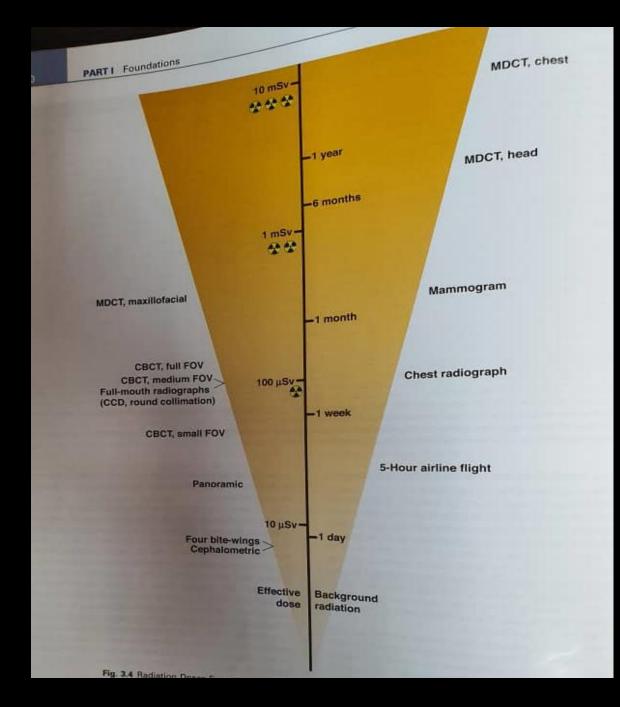
Estimating cancer risk from diagnostic dentomaxillofacial radiology


- Primary risk from dental x-ray:radiation induced cancer
- IT is difficult it for low dose x-radiation

Because

Extrapolating, indistinguishable from other cancers, cancer is a common disease : direct measurement , time between radiation exposure and development cancer : years

LNT(linear nonthreshold)hypothesis


- There is a linear relationship between dose and the risk of inducing a new cancer
- There is no threshold or safe dose below which there is no added risk.

patient doses from diagnosis dentomaxillofacial radiology

Examination	Median Effective Dose	Equivalent Background Exposure	
Intraoral [®]			
Rectangular collimation			
Posterior bite-wings: PSP or F-speed film	5 µSv	0.6 day	
Full-mouth: PSP or F-speed film	40 µSv	5 days	
Full-mouth: CCD sensor (estimated)	20 µSv	2.5 days	
Round collimation	19.00		
Full-mouth: D-speed film	400 µSv	48 days	
Full-mouth: PSP or F-speed film	200 µSv	24 days	
Full-mouth: CCD sensor (estimated)	100 µSv	12 days	
Extraoral			
Panoramic ^a	20 µSv	2.5 days	
Cephalometric [®]	5 µSv	0.6 day	
Chest	100 µSv	12 days	
Cone beam CT ^a			
Small field of view (<6 cm)	50 µSv	6 days	
Medium field of view (dentoalveolar, full arch)	100 µSv	12 days	
Large field of view (craniofacial)	120 µSv	15 days	
Multidetector CT			
Maxillofacial ^b	650 µSv	2 months	
Head	2 mSv	8 months	
Chest	7 mSv	2 years	
Abdomen and pelvis, with and without contrast ⁶	20 mSv	7 years	

TABLE 3.3 Relative Radiation Level Designations, American College of Radiology			
Relative Radiation Level	Adult Effective Dose Range	Pediatric Effective Dose Range	
•	<100 µSv	<30 µSv	
	100 µSv to 1 mSv	30 µSv to 300 µSv	
000	1-10 mSv	300 µSv-3 mSv	
0000	1030 mSv	3–10 mSv	
	30–100 mSv	10-30 mSv	

Communication radiation risks to patients

Implementing radiation protection

- Justification
- Optimization
- Dose limitation

Patient protection

- Patient selection criteria
- Conducting the examination

Reducing Dental Exposure

 The most effective approach to reduce unnecessary exposure is to reduce unnecessary radiographic examinations.

Conducting the examination

- Film and digital imaging
- Intensifying screens and film or digital imaging
- Source to skin distance
- Rectangular collimation
- Leaded aprons and collars
- Film and sensor holders
 Kilovoltage , Mas, film processing, interpreting the images

BOX 3.1 Means for Reducing X-Ray Exposure

Use Good Clinical Judgment and Apply Evidence-Based Imaging Guidelines

- Make radiographs when they are likely to contribute to diagnosis and treatment planning
- Use selection criteria to assist in determining type and frequency of radiographic examinations

Use Best Practices in Radiographic Imaging

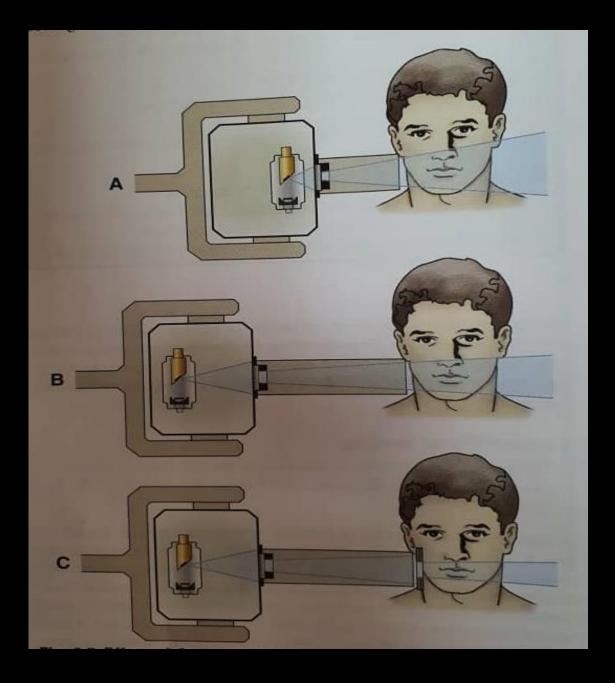
- Optimize your exposure settings to the patient's size and anatomic area to be imaged
- Intraoral radiography
 - Use E/F-speed film or digital sensors
 - · Use holders to support film or digital sensors
 - Use rectangular collimation
 - Make exposures with 60–70 kVp
- Use thyroid collars
- · Panoramic radiography
 - Use rare-earth screens for film imaging or use digital systems
- · Cephalometric radiography
 - Use rare-earth screens for film imaging or use digital systems
 - Use a thyroid collar, if it will not obstruct anatomic landmarks for cephalometry
- Cone beam computed tomography (CBCT)
 - · Restrict the field of view to cover the region of interest
- Film-based imaging
 - Use time-temperature processing rather than "sight" processing, or use
 an automatic processor

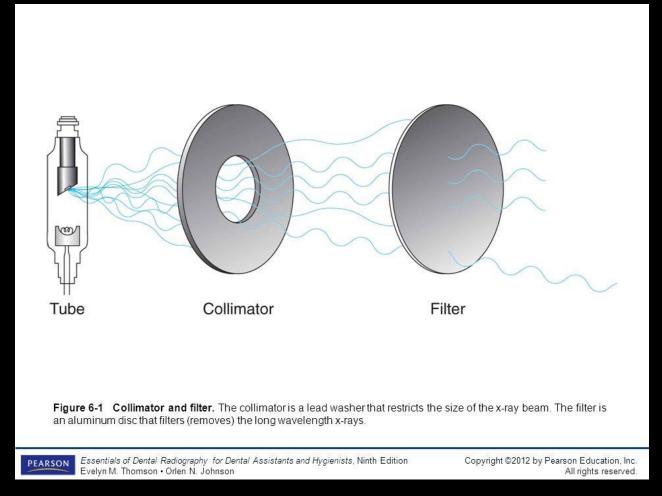
Use Best Practices in Personnel Protection

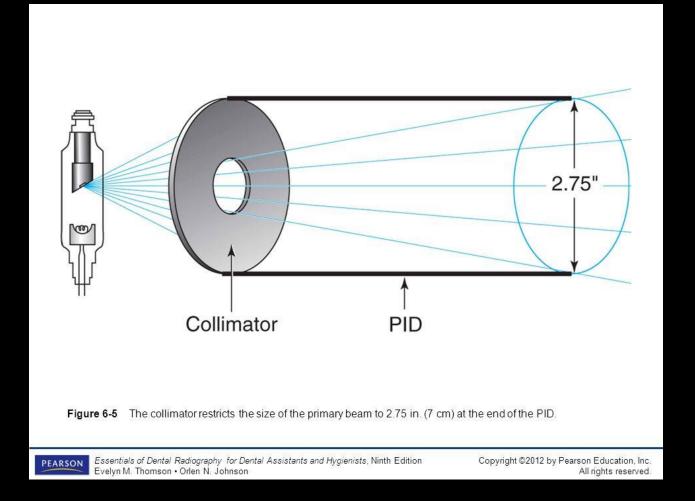
- Stand behind a protective barrier or at least 6 feet (2 m) away from patient and away from the x-ray machine when making exposure
- · For handheld devices, ensure the protective backscatter shield is in place

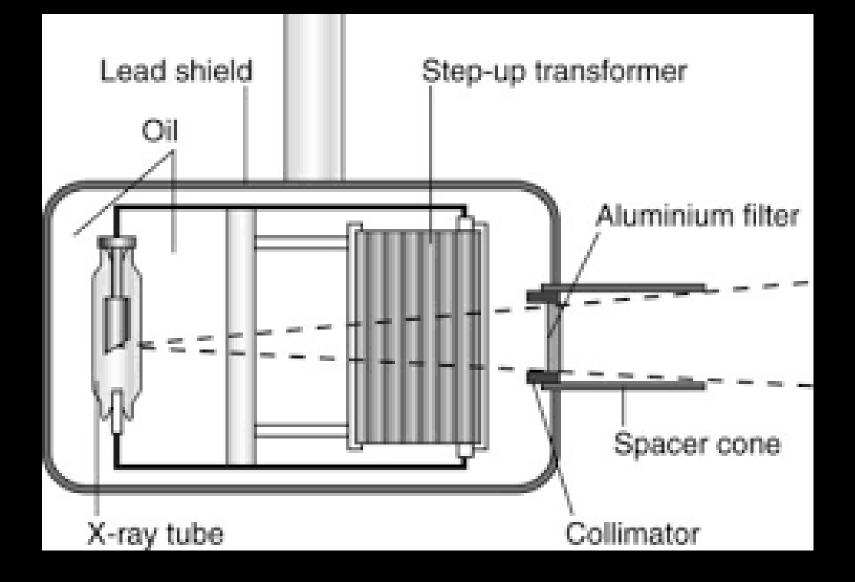
Film and digital imaging

F-speed or digital

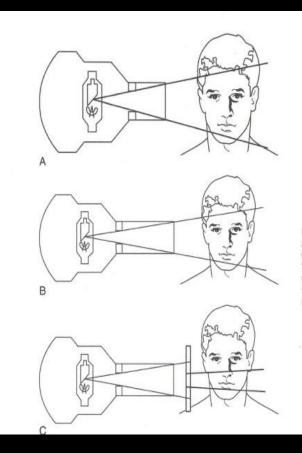

- Rare –earth intensifying screens are recommended with high speed film of 400 or greater.
- Digital system =film in extraoral radiography

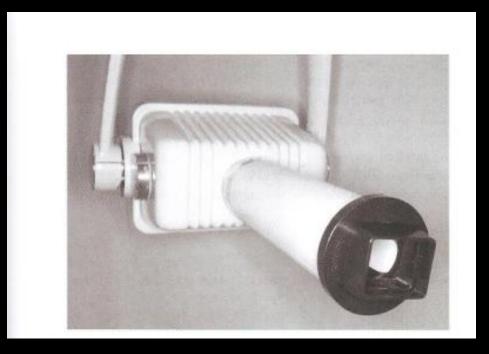

Source -- to-skin distance

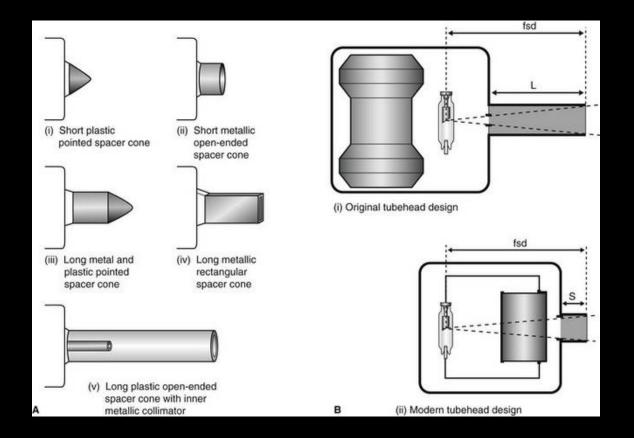

• Long distance (40 cm) :

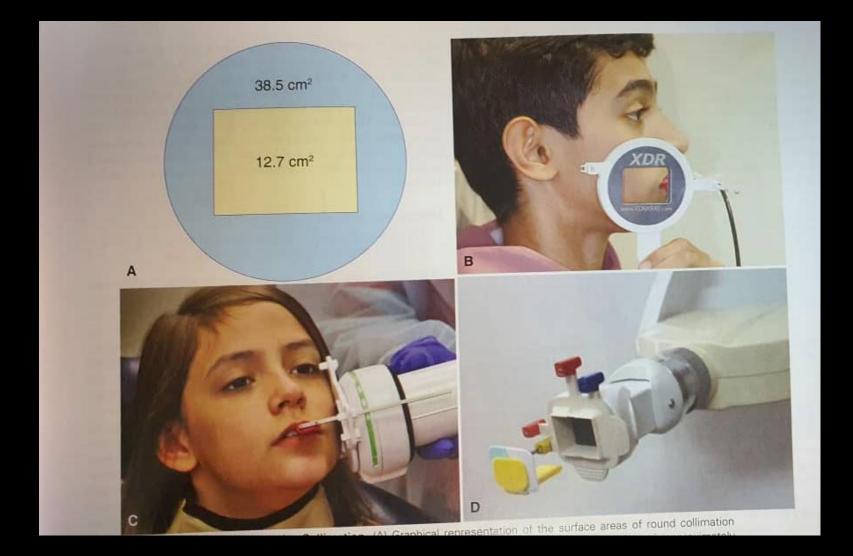

exposure 10-25 %

Long SOD: less divergent , exposure tissue volume






Rectangular Collimation


Rectangular dose 5 round collimation

Filtration

- Low energy x-ray 20 %
- 50-70 kvp:1.5 mm AL
- 70:2.5 mm AL

Leaded Aprons and Thyroid Collars

 If all of the NCRP are followed ,the use of a leaded apron is not required

- Thyroid shielding strongly recommended for children
- Lead-free a:high A,low density :antimony,tin,tungsten

Film and sensor holders

- Significant reduction : in unacceptable images
- PID:The leadlined cone or cylinder that directs the xray beam during a radiographic exposure.

KVP

- Kvp 1 lower contrast, decrease dose
- Best balance :60-70

mAs

• Tube voltage, milliamperage, exposure time

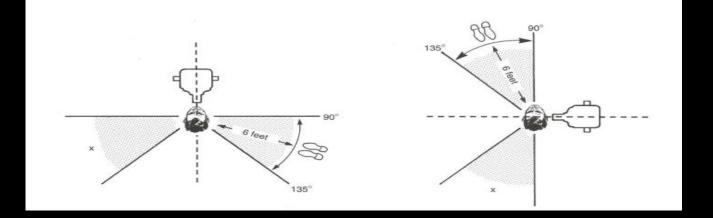
- Image density is controlled by mAS
- Radiograph with correct density :very faint soft tissue outlines,gray scale that adequately distinguishes enamel,dentin,cortical bone and trabecular bone.

Film Processing

- Time –temperature
- Should follow the film manufacturer 's recommendation for processing solutions
- Automatic film processors :30 % repeated radiography :processor variability

Interpreting the images

Radiographs :semidarkened room ,magnifying glass


 Digital images :computer screen,darkened environment

Personnel protection

- Operators of radiographic equipement should use barrier protection when possible
- 1.Barrier protection : 2 mm pb,(1mGy per year)
 Sinon position and distance rule
- Operator stand 6 feet(2 m),90-135
- Never hold films or sensors in place
- Neither operator no patient should hold tube housing during exposure
- Personnel monitoring

position and distance rule

Perssonel Monitoring devices

ADA recomends :workers :annual dose >1msv Personal dosimeter:occupational dose film badge:100 micro Gy

- Thermoluminescence dosimeter:50 micro Gy
- Optically stimulated luminescence :10 microGy
- Direct ion storage ,USB:internet

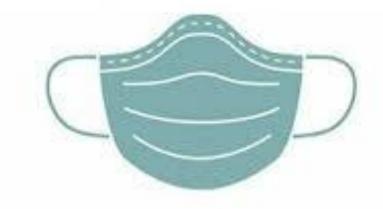
Dose Limits

- DLs imply that if received annually ,the risk of death would be less than 1 in 10000
- These limits pertain to planned exposure situations (no background ,no therapeutic)

TABLE 3.4 F Human Exposi	NCRP	
Occupational Expo Annual effective dose	50 mSv/year	20 mSv, averaged over defined 5-year periods
Cumulative effective dose	10 mSv × age	100 mSv in 5 years and should not exceed 50 mSv ^c in any single year
Annual equivalent dose Lens of eye	Absorbed dose of 50 mGy	20 mSv, averaged over defined 5-year periods, and exposure in any single year should not exceed 50 mSv
Skin	500 mSv	500 mSv
Hands and feet Pregnant workers	0.5 mSv/month to embryo-fetus	1 mSv to the embryo/fetus after declaration of pregnancy
Public Exposure ^d Annual effective dose	1 mSv (continuous or frequent exposure) 5 mSv (infrequent exposure)	1 mSv
Annual equivalent dose in:		
Lens of eye	15 mSv	15 mSv
Skin	50 mSv	50 mSv

Quality assurance

Protocols for x-ray tube, image receptor,.....


Periodic assessment of the performance of all parts of the radiologic procedure.

Vala

3/9/2021