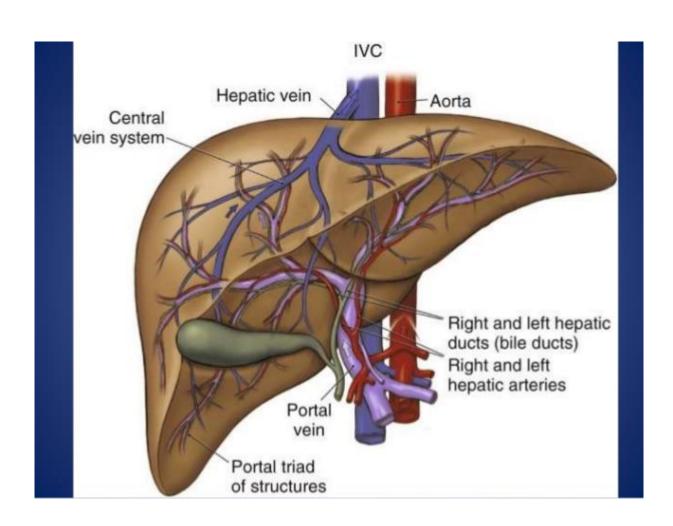

LIVER

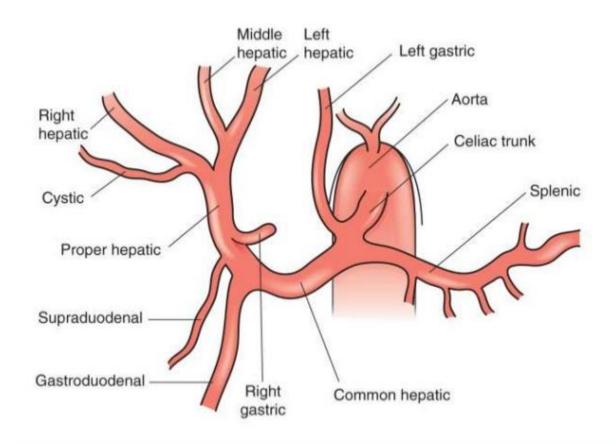

Surface anatomy

- In RUQ
- 5<sup>th</sup> ICS in midclavicular line to the Rt costal margin.
- Weighs 1400 g n women and 1800g n men .
- Span 10 cm +/-2



- The liver is divided into right and left lobes of almost equal size by a major fissure (Cantlie's line) running from the gallbladder fossa in front to the IVC fossa behind.
- This division is based on the right and left branches of the hepatic artery and the portal vein, with tributaries of bile (hepatic) ducts following.
- 3.The middle hepatic vein (MHV) lies in Cantlie's line.

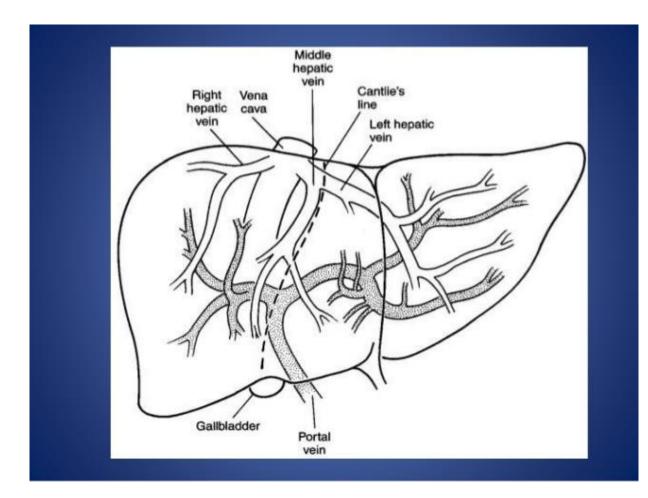





# Gallbladder injuries...

- Rare
- Predisposing factors.
- contusions, avulsions, lacerations or perforations.

### Blood supply – Hepatic artery


- Intrahepatic anatomy; part of portal tried follows segmental anatomy.
- Extrahepatic anatomy; highly variable:
  - Commonest (in 60%) anatomy: abdominal aorta
    →celiac trunk → CHA → proper hepatic art → Rt
    and Lt hepatic artery
  - LHA → seg 1,2,3 and → middle hepatic artery → seg 4.
  - RHA → cystic art , Rt liver



## Blood supply – Hepatic vein

- Rt hepatic vein → Drain seg 5,6,7,8 → vena cava.
- Middle hepatic vein → Drain seg 4,5,8
- Lt hepatic vein → Drain seg 2,3

[ seg 1 drain by short hepatic → vena cava]

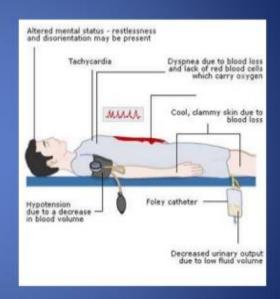


### Introduction

- Most commonly injured organ in Blunt abdominal trauma
- 2<sup>nd</sup> most commonly injured organ in Penetrating abdominal trauma after Bowel.
- Motor vehicle collision is the most common injury mechanism
- The posterior portion of the right lobe is the most common site of hepatic injury in blunt trauma

## Why the liver...

- Large organ
- Friable parenchyma, thin capsule, fixed position in relation to spine → prone to blunt injury
- Wide bore, thin walled blood vessels with high blood flow → Excessive blood loss
- Right lobe larger, closer to ribs → more injury


### **Associations:**

- Isolated liver injury occurs in less than 50% of patients.
- Blunt trauma → 45% with spleen
- Rib fracture → 33% with Liver injury

# Injuries

- Parenchymal damage
- Subcapsular hematoma
- Laceration
- Contusion
- Hepatic vascular disruption
- Bile duct injury

- Blood Loss
- Peritonism
- Symptoms
  - Abdominal Pain
  - Radiation to shoulder
  - Altered Sensoium
- Signs
  - Hypotension
  - RUQ tenderness, and guarding
  - Generalized Peritonism
    - Hemoperitoneum
    - Biliary Peritonitis
  - Delayed Intra-abdominal abscess



#### Management

- Initial resuscitation as per ATLS protocol
- It is important to note the **mechanism** of injury
- Clinical picture may vary from mild RUQ pain through to peritonism to haemorrhagic shock
- Stable patients undergo CT imaging
- Unstable patients require resuscitation and laparotomy

## Labs & Radiology

- Hematologic
- Elevated LFTs
- DPL -- high sensitivity
- CT scan is the diagnostic procedure of choice.
- USG
- MRI ??
- Diagnostic Laparoscopy

# Angiography

- Active bleeding
- Transcatheter embolization
- Embolization & stenting for fistulas.

### **Hepatic CT Injury Grading Scale**

Grade I Laceration(s) < 1 cm deep

Subcapsular hematoma < 1cm diameter

Grade II Laceration(s) 1-3 cm deep

Subcapsular or central hematoma 1-3cm diam

Grade III Laceration(s) 3-10 cm deep

Subcapsular or central hematoma 3-10 cm diam

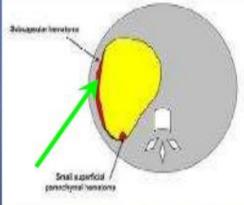
Grade IV Laceration(s) > 10 cm deep

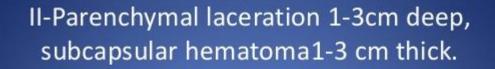
Subcapsular or central hematoma > 10cm diam

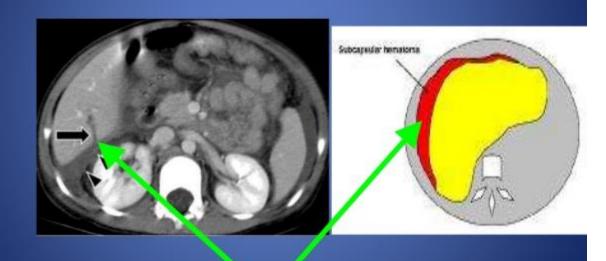
Lobar maceration or devascularization

Grade V Bilobar tissue maceration or devascularization


Grade VI Hepatic Avulsion


### **CT Scans**

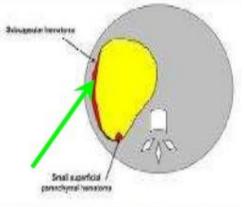

- Accurate in localizing the site of liver injury and any associated injuries
- Used to monitor healing
- CT criteria for staging liver trauma uses AAST liver injury scale
- Grades 1-6



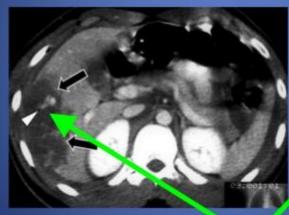

I-Subcapsular hematoma<1cm, superficial laceration<1cm deep.

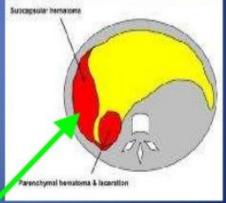






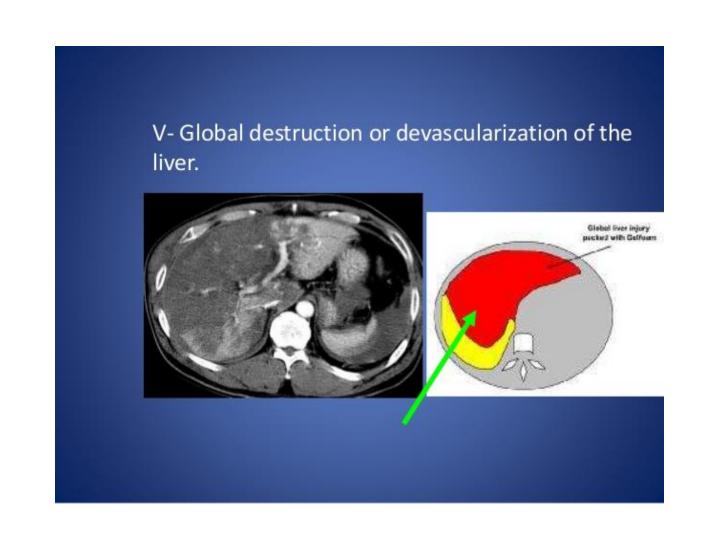


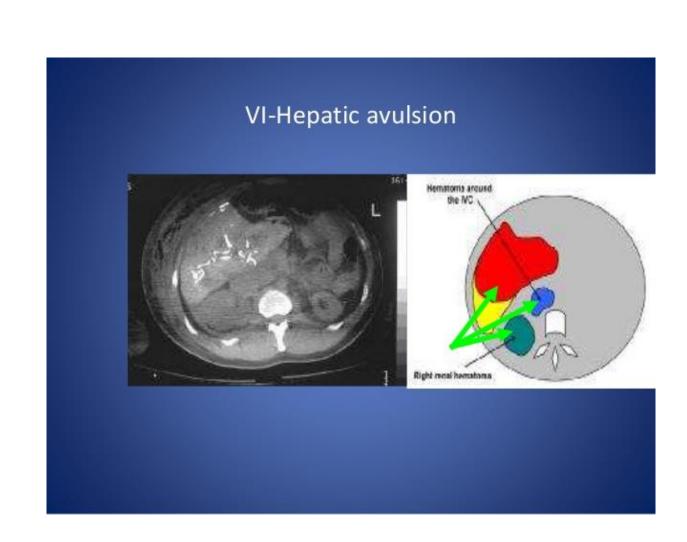





I-Subcapsular hematoma<1cm, superficial laceration<1cm deep.






# III-Parenchymal laceration> 3cm deep and subcapsular hematoma> 3cm diameter.






# IV-Parenchymal/supcapsular hematoma> 10cm in diameter, lobar destruction,







# Gallbladder injuries...

- Rare
- Predisposing factors.
- contusions, avulsions, lacerations or perforations.

# Management

- Remember associated injuries
  - Spleen
  - Pancreas
  - Bowel
- Resuscitate
- Consider Cryoprecipitate, FFP
- Assessment of injury
  - Spiral CT
  - Laparotomy
- ◆ Treatment
  - ♦ OM
  - ♦ NOM

### Management

Initial management is done according to ATLS protocol.

#### **Criteria for non Operative Management:**

- (1) haemodynamic stability, or stability achieved with minimal resuscitation(1-2 litres of crystalloid)
- (2) absence of other abdominal injuries requiring laparotomy
- (3) preserved consciousness allowing serial examination of abdomen
- (4) absence of peritonism
- (5) absence of ongoing bleeding on CT scan

- Non-operative management (NOM) consists of
  - close observation of the patient complemented with angio-embolization, if necessary.
  - Observational management involves
    - admission to a unit and the monitoring of vital signs,
    - strict bed rest,
    - frequent monitoring of hemoglobin concentration
    - serial abdominal examinations

### **Criteria for Operative Management**

- 1) any patient who is haemodynamically unstable with suspected liver trauma
- (2) multiple transfusions required to maintain haemodynamic stability
- (3) signs of peritonism, or development of peritonism on serial abdominal examinations
- (4) active arterial blush on CT for which interventional techniques have failed and/or ongoing bleeding on CT scan with focal pooling of contrast
- (5) penetrating trauma

### Operative management

- In hemodynamically unstable patient
- Grade IV, V and VI injuries
- Goal is to arrest Hemorrhage
- Initial control of hemorrhage is attained by
  - Perihepatic packing
  - Mannual compression

## 4 Ps of operative management

- Operative management can be summarized as
  - PUSH
  - PRINGLE
  - PLUG
  - PACK

## Perihepatic packing

- Lobes of the liver must be compressed back to normal position
- Packs should never be inserted into the hepatic wound
  - → tear the vessels and will increase the bleeding.
- To reduce the risk of abdominal compartment syndrome due to aggresive packing,
  - some advocate closing the upper part of the wound to enhance the tamponade effect but leaving the lower two-thirds open covered by bagota.

- The right costal margin is elevated, and the pads are strategically placed over and around the bleeding site
- Additional pads should be placed between the liver, diaphragm, and anterior chest wall until the bleeding has been controlled.
- Sometimes 10 to 15 pads may be required to control the hemorrhage from an extensive right lobar injury

### Perihepatic packing

- Packing is not as effective for the injuries to the left hemiliver,
- With the abdomen open, there is insufficient abdominal and thoracic wall anterior to the left hemiliver to provide adequate compression.
- Fortunately, haemorrhage from the left hemiliver can be controlled by
  - dividing the left triangular and left coronary ligaments and compressing the left hemiliver between the hands.

- Packs are removed after 36 to 48 hours provided the patient is stable
- Should NOT be removed before 24 hours as there are chances of rebleed
- Perihepatic packing will control profuse haemorrhage in up to 80% of patients

- A Pringle maneuver can help delineate the source of hemorrhage.
- In fact, hemorrhage from hepatic artery and portal vein injuries will halt with the application of a vascular clamp across the portal triad;
- whereas, bleeding from the hepatic veins and retrohepatic vena cava will continue.

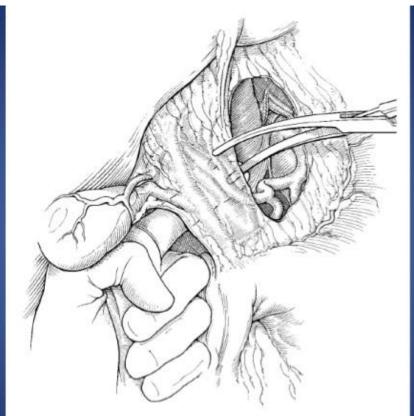



Figure 2 The Pringle maneuver controls arterial and portal vein hemorrhage from the liver. Any hemorrhage that continues must come from the hepatic veins.

# Hemorrhage control

- Ligation upto common hepatic artery is tolerated due to collaterols
- Common hepatic artery should be repaired
- If right hepatic artery is ligated the cholecystectomy should be performed

# Hemorhage control "Hepatorraphy"

- A running suture is used to approximate the edges of shallow lacerations,
- Deeper lacerations are approximated using interrupted horizontal mattress sutures placed parallel to the edge of the laceration.
- When the suture is tied, tension is adequate when
  - visible hemorrhage ceases or
  - liver blanches around the suture

### Mesh Wrapping

- Highly selective tight compression without increased intraabdominal pressure
- Key points
  - Apply mesh under enough tension to create a tamponade effect
  - mesh should be attached into two anchoring stable points
    - · diaphragmatic crus and
    - the falciform ligament

# Hepatotomy and selective vascular ligation:

- Pachter et al. recommend a rapid and extensive finger fracture, often through normal parenchyma, to reach the site of injury
- Hepatotomy is done under Pringle manoeuvre
  - finger fracture method is used to divide the parenchyma to ligate the bleeding vessels
- Pringle clamp is released intermittently to identify bleeding vessels.

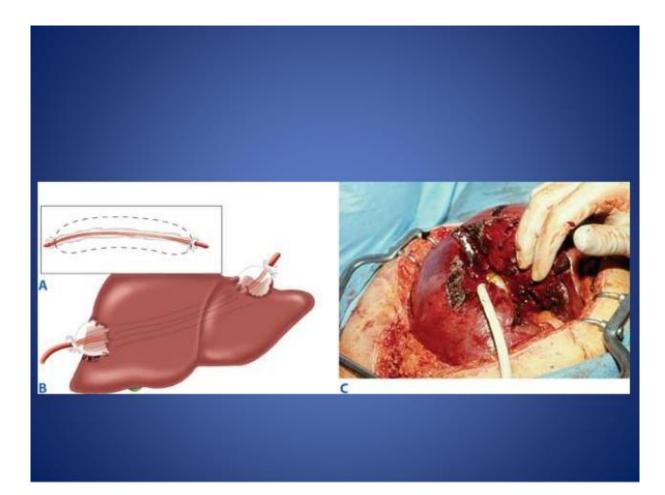
#### Finger fracture technique (digitoclasy),

liver parenchyma is crushed between the thumb and one finger isolating vessels and bile ducts, which can then be ligated and divided.

#### Non-anatomical resection of liver

- Removal of devitalised parenchyma using the line of injury as the boundary of the resection rather than standard anatomical planes
- Used in conjunction with inflow control and hepatotomy

#### Hepatic segments Resections


- Right hemihepatectomy (segments 5 to 8);
  AKA as Right hepatectomy or right hepatic lobectomy
- Right trisectionectomy (segments 4 to 8);
  AKA as Right lobectomy or Rrisegmentectomy of Starzl
- Left hemihepatectomy (segments 1 to 4);
  AKA as Left hepatectomy or Left hepatic lobectomy
- Left lateral sectionectomy (segments 1 to 3);
  AKA as Left lobectomy or Left lateral segmentectomy

#### Non-anatomical resection of liver

- Removal of devitalised parenchyma using the line of injury as the boundary of the resection rather than standard anatomical planes
- Used in conjunction with inflow control and hepatotomy

### Intrahepatic balloon tamponade

- Useful for transhepatic penetrating injury.
- Foley catheter and Penrose drain or a Sengstaken-Blakemore tube can be used
- Passed into the length of the tract and then inflated.
- Radio-opaque contrast fluid is used so integrity and position can be later confirmed radiologically.
- Once patient is stabilized it is removed through re laprotomy



#### Total vascular exclusion

- Last resort limited to specialist centres
- Used for extensive retrohepatic venous injuries,
- Involves clamping of the portal triad and infraand supra-hepatic IVC.
- Used to manage grade V penetrating injuries

#### **Post Op Complications**

- Post operative hemorrhage
- Surgical haemorrhage (ie discrete bleeding)
- disseminated intravascular coagulation account for the majority of causes
- Chances increased if packs removed <36 hours</li>
- Coagulapathy is corrected first if hemorrhage is persistant then angiography with embolisation or re-laprotomy is consistered.

# Sepsis and abscess

- 12-32% of patients
- CT with intravenous and oral contrast should be performed to diagnose the cause of sepsis
- Most intraabdominal abscess can be drained percutaneously under USG or Ct guidance
- If not possible then operative drainage is done

#### Summary

- Non operative management with interventional tehniques is preferred
- Grade IV and V injuries in stable patients can also be managed conservatively
- In surgical management → damage control surgery is preferred than definite procedures